@inproceedings{don-yehiya-etal-2022-prequel,
title = "{P}re{Q}u{EL}: Quality Estimation of Machine Translation Outputs in Advance",
author = "Don-Yehiya, Shachar and
Choshen, Leshem and
Abend, Omri",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.767/",
doi = "10.18653/v1/2022.emnlp-main.767",
pages = "11170--11183",
abstract = "We present the task of PreQuEL, Pre-(Quality-Estimation) Learning. A PreQuEL system predicts how well a given sentence will be translated, without recourse to the actual translation, thus eschewing unnecessary resource allocation when translation quality is bound to be low. PreQuEL can be defined relative to a given MT system (e.g., some industry service) or generally relative to the state-of-the-art.From a theoretical perspective, PreQuEL places the focus on the source text, tracing properties, possibly linguistic features, that make a sentence harder to machine translate.We develop a baseline model for the task and analyze its performance. We also develop a data augmentation method (from parallel corpora), that improves results substantially. We show that this augmentation method can improve the performance of the Quality-Estimation task as well.We investigate the properties of the input text that our model is sensitive to, by testing it on challenge sets and different languages. We conclude that it is aware of syntactic and semantic distinctions, and correlates and even over-emphasizes the importance of standard NLP features."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="don-yehiya-etal-2022-prequel">
<titleInfo>
<title>PreQuEL: Quality Estimation of Machine Translation Outputs in Advance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shachar</namePart>
<namePart type="family">Don-Yehiya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leshem</namePart>
<namePart type="family">Choshen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omri</namePart>
<namePart type="family">Abend</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present the task of PreQuEL, Pre-(Quality-Estimation) Learning. A PreQuEL system predicts how well a given sentence will be translated, without recourse to the actual translation, thus eschewing unnecessary resource allocation when translation quality is bound to be low. PreQuEL can be defined relative to a given MT system (e.g., some industry service) or generally relative to the state-of-the-art.From a theoretical perspective, PreQuEL places the focus on the source text, tracing properties, possibly linguistic features, that make a sentence harder to machine translate.We develop a baseline model for the task and analyze its performance. We also develop a data augmentation method (from parallel corpora), that improves results substantially. We show that this augmentation method can improve the performance of the Quality-Estimation task as well.We investigate the properties of the input text that our model is sensitive to, by testing it on challenge sets and different languages. We conclude that it is aware of syntactic and semantic distinctions, and correlates and even over-emphasizes the importance of standard NLP features.</abstract>
<identifier type="citekey">don-yehiya-etal-2022-prequel</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.767</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.767/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>11170</start>
<end>11183</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PreQuEL: Quality Estimation of Machine Translation Outputs in Advance
%A Don-Yehiya, Shachar
%A Choshen, Leshem
%A Abend, Omri
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F don-yehiya-etal-2022-prequel
%X We present the task of PreQuEL, Pre-(Quality-Estimation) Learning. A PreQuEL system predicts how well a given sentence will be translated, without recourse to the actual translation, thus eschewing unnecessary resource allocation when translation quality is bound to be low. PreQuEL can be defined relative to a given MT system (e.g., some industry service) or generally relative to the state-of-the-art.From a theoretical perspective, PreQuEL places the focus on the source text, tracing properties, possibly linguistic features, that make a sentence harder to machine translate.We develop a baseline model for the task and analyze its performance. We also develop a data augmentation method (from parallel corpora), that improves results substantially. We show that this augmentation method can improve the performance of the Quality-Estimation task as well.We investigate the properties of the input text that our model is sensitive to, by testing it on challenge sets and different languages. We conclude that it is aware of syntactic and semantic distinctions, and correlates and even over-emphasizes the importance of standard NLP features.
%R 10.18653/v1/2022.emnlp-main.767
%U https://aclanthology.org/2022.emnlp-main.767/
%U https://doi.org/10.18653/v1/2022.emnlp-main.767
%P 11170-11183
Markdown (Informal)
[PreQuEL: Quality Estimation of Machine Translation Outputs in Advance](https://aclanthology.org/2022.emnlp-main.767/) (Don-Yehiya et al., EMNLP 2022)
ACL